No Frame Left Behind

Repetitive Action Counting with State Space Transformers

Alec Kerrigan
University of Central Florida
Orlando, Florida

aleckerrigan@knights.ucf.edu

Moazam Soomro
University of Central Florida
Orlando, Florida

Moazamsoomro@knights.ucf.edu

Abstract

Repetitive activity counting is an interesting sub-field of
action recognition concerned with identifying each peri-
odic action in a video. Existing solution greatly vary in
approach. However, nearly every method relies on multi-
ple forward passes of the same video. These passes either
consist of non-overlapping consecutive windows or feed-
ing the video at different sample rates. This is resultant
from the computational difficulty of using large numbers of
frames. This results in both slower performance, as well
as the inability to understand longer periodic actions. We
present an approach using the newly proposed Structured
State Spaces to systematically reduce the feature dimen-
sion of video frames while retaining both short term and
long term temporal information, critical to repetitive action
counting. We show that our system is competitive with cur-
rent state of the art approaches, and is able to count videos
at frame rates not possible by other methods.

1. Introduction

Visual repetitive motion that happen in a occur in the
wild like jumping with a rope, bouncing a ball, or clapping
the hands are known as repetitive actions that occur in par-
allel. These periodic actions occur on a regular basis and
can be observed in both natural and urban environments as
part of our daily activities. It is humanly impossible and
challenging to count repetitions of actions, especially those
which are which have a small period length.

Repetitive counting is common within the computer vi-
sion applications such as counting the number of the same
pattern activities in motion. The main goal is to classify

Connor Malley
University of Central Florida
Orlando, Florida

malleyconnor@knights.ucf.edu

Fatemah Najafali
University of Central Florida

Orlando, Florida
fsnajafali@knights.ucf.edu

and count the repeated actions in a video for a single sam-
ple within a period of time.

Predicting the repetitions in an action video is not an easy
task as it some challenges associated with it: having only a
few repetitions within a video, the period length of an ac-
tion can vary drastically for example a video of chopping
an onion compared to a video of earth rotating, variance in
viewpoint and non-stationary repetition. There have been
multiple ways this problem has been addressed in which
are discussed in detail in 2. Our work initially starts by pro-
cessing the repetitive video by computing the sample rate
for the continuous motion in the video frames. A higher
sample rates results in information loss and there are fewer
frames for the repetitions. Hence, not much can be counted
with fewer repetitions. To overcome this, both the RepNet
model [5] and the sight and sound network [18] was im-
plemented to generate counts for repeated actions with uni-
form sampling. The approach for each of them has video
clips as input with various components as part of the archi-
tecture and finally the period predictor as output resulting
in the number of counts for repetitive actions. However, the
method during inference uses multiple passes for the video
as the camera augmentation could differ based on scaling,
rotation, or translation for each frame and chooses the sam-
ple rate resulting in the highest score counting prediction.

As previous methods require multiple passes to over-
come the sample rate. Our proposed method is to inter-
polate the features of a video sample in one pass. The fea-
tures are extracted from snippets of the video and passed
through a ResNet-50 encoder to produce per-frame embed-
dings. These embeddings are passed through the temporal
self-similarity matrix to compute the similarities between
all the pairs of the embeddings which eventually would pre-

dict the period count of a video. However, with this model
the loss rarely converged with training.

In our work, we pass the video through our model only
once and are able to do this with the aid of state space
sequence S4 block [9]. The S4 block learns temporal in-
formation by using continuous state space, long range de-
pendencies, and a combination of fast discrete representa-
tions where the number of features is reduced from 2048 up
to 256. The main backbone is similar to that of the Rep-
Net model [5] with the period predictor and temporal self-
similarity matrix to compute the final counts of the repet-
itive motions using the Countix dataset. The best results
for our model produced 0.46 OBO and 0.47 MAE with 180
frames.

2. Related Work

RepNet Model. The RepNet model [5] produces fea-
tures for each video frame in the network. We implemented
two main components of the architecture: Temporal Self-
similarity Matrix (TSM) and Period Predictor. TSMs are
useful for human action recognition that basically matches
similar pairs of period segments by forming a single chan-
nel that provides regularization and the identical pairs are
computed using a similarity function. The period predic-
tor is the final module of the model that generates two out-
puts, the period length estimation, and periodicity classifi-
cation. Each of the outputs are produced from the final self-
similarity matrix that has the representation of per frame
and fully connected layers.

Sight and Sound. The use of repetitive counting is im-
plemented using video clips with audio data as mentioned
in [18]. Although, the final counting prediction is produced
from various components, such as, temporal stride deci-
sion and reliability estimation. However, multiple passes
for each video frame are used to produce the final output.
We proposed using S4 decoder blocks and transformer lay-
ers to generate single passes for the period length estima-
tion. In addition, we incorporated the Countix dataset that
includes various activities of repeated actions as the video
data. With this, the dataset was not fully complete because
some videos were missing while some were broken, clean-
ing up the dataset about 500 were lost from the 8757 videos
which was not a hindrance to our implementation.

Counting in Computer Vision. In the field of computer
vision, counting objects in an image or video is a common
task, a few examples are, feature extraction with regression
from an image [13], using crowd densities [10], and cell
counting [!2]. Furthermore, the repetitive counting trend
has been popular in recent years, particularly in videos. The
video with repeated motion is displayed, and the period cy-
cle length is computed to determine the number of repeti-
tions with less usage of the TSM.

Real-World Repetition Estimation The authors [14]

addressed repetition estimation by using wavelet transform
to compensate non-stationary video, and time varying flow
and its differentials to estimate repetitions. [14] modeled
the 3D natural repetitive motion as expansion, rotation or
translation, depending upon the curl of the flow field and
divergence. They present an analysis of time varying flow
gradient and derive three motion types in 2D field: oscilla-
tory, constant and intermittent. To map the 3D motion view
in 2D, two viewpoints were used, and derived eighteen dif-
ferent examples of repetitive view by applying differential
operators on the flow field of 3D motion. This work was
focused on frequency domain analysis or pattern matching,
our work is does not use such such techniques and rather
provides an end-to-end solution.

3. State Space Transformers
3.1. Definition

Structured State Spaces, introduced by [7] offers a novel
way of modeling long term, as well as short term, depen-
dencies of very long sequences in a far more efficient way
than self-attention. Typically, all previous methods, such as
RNNs, CNNs, and Transformers have produced interesting
and unique modifications to handle long sequences such as
Lipshitz RNNs [6] or Performers [2], they often still fail as
the number of steps grow very large.

S4 sequence models solves this computation bottleneck
by abstracting learning a set of state dimension matrices,
then decomposing them in such a way as to efficiently
model the change in information over time. This can be
described by the following equation.

z (t) = Ax(t) + Bu(t)

/ (1
y (t) = Cx(t) + Du(t)

Essentially, the next state x' is described by some state xt
and an input signal u(t) parameterized by learnable matri-
ces A and B, while the following output signal is described
by the same state and input signal, but parameterized by
matrices C' and D. [7] describes in depth the decomposition
process, but essentially proves that all four matrices can ef-
ficiently be learned through gradient decent. Additionally,
this process allows long range dependencies as well as dis-
crete representations to be quickly modeled, shown in ??.

3.2. S4 Decoder

The S4 layer can therefore be used for a wide variety
of purposes. Similar to how transformers were repurposed
in [4] from a purely natural language application to one that
could work with visual tokens, an S4 layer can be applied
to a wide variety of inputs. Recently [9] showed that the S4
layer can be used to reduce a very large number of visual
tokens (typically in the tens of thousands) from a long down

7 2 3 4 5 6 T 8 - 10 L € 12 13 14 15 16 17 18 8 20 21 22
Figure 2. Sampling Rate of 1

I I I I I I . T
! 3 5 7 9 11 13 15 17 19 21

Figure 3. Sampling Rate of 2

. .

7 6 11

16 21

Figure 4. Different sampling rates can lead to different ground truth action counts.

<" _ || ooooe
\\\’“”" .. —L\—>’/ a ‘\

/1) 10 0] o

. A=|1 2 0 _ oz = B

X% =Ax + Bu 13 3 x=Ax+Bu y=Kx*u

y =Cx+Du y =Cx+Du

Continuous Long-Range

State Space Dependencies Fast Discrete Representations

to a more manageable number for temporal understanding.
In their work, they introduce the S4 Decoder, shown in 6,
which reduces both the number of spacial tokens as well as
each token’s feature dimension while retraining longer term
and short term information. We utilize this decoder in our
work.

Assume that S4 decoder is given some spaciotemporal
feature X € RT=H=WazD the S4 decoder block can de-
scribe its operation as follows.

Zmip = MLP(Pooling(2s4))

Tskip = Linear(Pooling(x;y))

(@)

Tout = Tmlp T Tskip

In this formulation, LN refers to a Layer Norm [1] oper-
ation Fbeing performed on the sequenced. Then, that nor-
malized sequence is fed to the S4 layer to extract the se-
quences temporal information. Both the z44 as well as the
skip connection xy;, are given some max pooling opera-
tion. The kernel size of this operation is dependant on the
layer. Typically, this kernel is of size 1x2x2. However,
later layers switch to a 1z1x1 once all spacial tokens have
been reduced to 1. Then, both x4 and 24, are fed to
a multi-layer perception, and a single linear layer, respec-
tively. This is similar to the typical operation of transform-
ers as described in [16], but aims to also reduce the dimen-
sionality of all features. Then, the temporal information and
the skip connection are combined through addition to out-
put the reduced features of the decoder.

XTﬁWxT)
1
o — @)
XTﬁWxT) XTEWxT)

| tinear |[wmP |

T xrEW<D | xTHWD

[Pooling][Pooling]
1 | kXTH’W’xD
AXTH’W’xD

e
N r—

XTH’W’XD

Figure 5. The S4 decoder, as described in [9]

4. Method
4.1. Convolutional Backbone

For the backbone of the model, we use the same back-
bone as RepNet [5] for most of our experiments, a pre-
trained Resnet-50 model [8] to generate a set of features
for each frame. Resnet-50 takes in frames which have been
resize to 112 x 112, and outputs a set of 2048 features for
each frame. The original RepNet model takes the output of
the 3rd layer from the Resnet-50 and performs 3D convo-
lution to add some temporal context to the frame features.
However, the output of the final Resnet-50 layer can instead

S$4 Transformers

Fxdx4x2048 Fx3x3x1024

il ;l

Backbone

- = 1 Transformation

Fx2x2x512 Fx1x1x256

Jo a6

J 70 L

TSM Frame-To-Frame
Features

CNN — FC ,—‘

Period Predictions

A\

Figure 6. Our approach, using the S4 Decoders to greatly reduce the size of video features while retaining temporal information.

be used to achieve similar results [5], or another model such
as the S4 model can be used to add temporal context to the
frame features. In this paper, we test multiple different op-
tions for the temporal enrichment. If using the output of
the Resnet model with no 3D convolution, this will result
in 2048 features per frame. If the 3D convolution is used
on the 3rd layer of Resnet, this results in 512 features per
frame.

4.2. Vision Transformer Backbone

We also test the replacement of the Resnet-50 backbone
with the Vision Transformer ViT T/32 [4]. Even the small-
est pretrained vision transformer available results in 49 spa-
cial tokens per frame. At the standard frame count of 64,
this means that these backbones can often output well over
3000 tokens per video. Many of the videos in the Countix
dataset are well over 180 frames, so any sort of self attention
between them to understand temporal information is simply
not computationally feasible. We perform experiments us-
ing the ViT Tiny/32 backbone to show our systems ability
to contend with such sequences.

4.3. Temporal Self-Similarity

For the period prediction module, we implement the
same model as [5]. This module starts by computing the
pair-wise similarities of the frame features, coming from the
output of the frame encoder. The pair-wise similarities are
calculated using the negative of the L2 distance, followed
by a row-wise softmax activation:

Sij = —Ilfi = fI 3)

Here, S;; is the similarity between the i-th frame embed-
ding f; and the j-th frame embedding f;. These similarities
then undergo a row-wise softmax activation, with the final
similarities stored in the Temporal Self-Similarity Matrix
(TSM):

65”/7

TSMy; = —e———
Zk:l csik‘/T

“4)

Here, this is the standard softmax function where N is
the number of input frame embeddings, and 7 denotes the
temperature. In this paper, 7 = 13.544 and N = 64, unless
stated otherwise, for the baseline models.

0.0159

0.0158

0.0157

0.0156

0.0155

0.0154

Figure 7. Example TSM of a set pf situps

From [5], this TSM serves to make the frame embed-
dings interpretable and to provide regularization, as the re-
sult is just a 2-dimensional image with a single channel.
Once it has been computed, it undergoes a 2-dimensional
convolution with a kernel size of 3 x 3, 32 filters, and a
stride of 1, followed by a ReLU activation.

Since there is no straightforward way to get rid of the
O(N?) computational complexity in the TSM, we experi-
ment with using S4 decoders to reduce the number of fea-
tures for each frame to reduce the overhead in computing
the TSM. This also should serve to provide extra temporal
context in the TSM.

4.4. Period Prediction

The result of the convolution is a feature map of size
32 x N x N. This is then reshaped into N frame embed-
dings of size 32 x N which is then projected to 512 fea-
tures for each frame. Per-frame multi-headed self attention
is then calculated on each frames features, using a single
transformer layer with an input embedding size of 512, a
hidden size of 512, and 4 heads. However, since the compu-
tational complexity of the transformer model is O(N?) with

respect to the number of frames, this can be a major bottle-
neck when using a lot of frames for counting. Therefore, we
also test the replacement of this transformer module with a
S4 decoder to improve the runtime.

4.5. Counting

In this paper, since we are only dealing with periodic
segments and assuming the same period length for each rep-
etition, a period length is generated for each frame using a
Multi-Layer Perceptron (MLP) head with 2 hidden layers
of size 512 with ReLU activation, and output size of %
The final output represents the probability of different pe-
riod lengths in terms of the number of frames, from 1 to
N

The final count can then be generated from the period
lengths by first calculating an average over each period
length I; for each frame, giving an average period length
lavg. Then the count is given by:

l
C ,t _ avg 5
oun N (®))

4.6. Evaluation Metrics

There are two main evaluation metrics used for evaluat-
ing the performance of repetitive counting models.The first
is the mean absolute error (MAE), which measure the dif-
ference in count, normalized by the true count, given by
Equation (6):

MAE — Yivy lei = Lil/l ©)
N
Here [; denotes the true count for the i-th video, and ¢;
denotes the predicted count. The second evaluation metric
used is the off-by-one error (OBO). This metric is a mis-
classification rate which measures how many samples are
off by a count of more than one, given by Equation (7)

szlz‘ > 1)
N

N
0BO = =1 ™

5. Data Augmentation

In this section we go over the data augmentation tech-
niques we used and discuss the parameters used:

5.1. Sampling

Our input to our network starts off by selecting a video
from the dataset and sampling it. We do random sampling
in a similar manner to the authors [5], that is sampling with
a randomly chosen stride of 1 to 4. All of the videos are
sampled at random with the consideration that the sampled
video clip C should at all times have at least 2 minimum
repetitions. This is to make sure the similarity matrix is not
sparse.

We found out by sampling randomly it creates a more
even distribution of the period length as opposed to the
original data being skewed towards larger period length
videos. As shown in Figure 8 the data distribution is heav-
ily skewed. This augmentation helps to prevent the model
being overfit on the data.

5.2. Horizontal Flip

We randomly augment the whole 64 frames of the input
video with horizontal flip to augment the data. The aug-
mentation is done to only a fraction of the complete dataset,
with a probability of p. This helps in increasing the vol-
ume of the data and also to make sure that the model does
not over fit on features specific to the motion but also other
motions in the video.

6. Experiments
6.1. Dataset

For all of our experiments, we use the Countix dataset,
gathered by the authors of [5]. This dataset is a subset of
the Kinetics-400 dataset [! 1], annotated with sections con-
taining only repetitive motion, as well as a count for each
video. In our experiments, we only use these repetitive sec-
tions. The resulting dataset has 4332 videos in the training
set and 1367 videos in the validation set, which is slightly
less than the original Countix due to some videos which
were removed from Youtube. The period lengths are as-
sumed to be uniform for the frames in each video, since
individual repetitions are not labeled. These period lengths
are given by the number of frames divided by the total sam-
pled count, after first ensuring that at least two repetitions
have been sampled.

It is clear from Figure 8 that there is a significant imbal-
ance of the count in this dataset. However, this is slightly
mitigated with the use of uniform sampling with a random
stride on the training set, up to 4x. Also, by forcing the the
sampled video to cover at least two repetitions, this creates
a wider spread of period lengths due to those videos which
get sampled at a 2-4x rate instead of a 1x rate in both the
training and validation sets.

6.2. Testing different model configurations

We tested multiple different model configurations, both
with and without the use of S4 layers, as well as some mod-
els with more than 64 frames. Unless stated otherwise, the
models use N = 64 frames and output the final period
length using a fully-connected network with 1 hidden layer
of size 512, and an output size of 32. The following is a
description of each of the different architectures tested:

* Network 1: This configuration simply takes the output
frame encodings from the Resnet-50 backbone and re-

Count Distribution

Number of Videos

Count

Period Length Distribution

120

100

80

60

Number of Videos

40

10 15 20 25 30
Period Length (in frames)

Figure 8. Distribution of count and period length in countix vali-
dation set

duces the features from 2048 to 512 with a linear pro-
jection. Then the model then adds a one-dimensional
positional embedding and forwards the frames through
a transformer encoder [16] with 3 layers, 4 heads, and
2048 feedforward size.

Network 2: This configuration is the same as network
1, except it forwards the frame encodings through a S4
decoder instead of a transformer. This S4 decoder has
an input and output size of 512, 1 head, and 3 layers.

Network 3: This network uses a S4 decoder with in-
put/output size 512, 1 head, and 3 layers on the output
of the Resnet-50 backbone to add temporal context be-
fore computing the temporal self-similarity. Then, a
3 x 3 convolution with 32 channels is applied on the
TSM, similar to [5].

Network 4: This network is exactly the same as the
original RepNet model, except the 3D convolution
is replaced with a S4 decoder as another method of
adding temporal context. This S4 decoder has an in-
put size of 1024 from the third layer of Resnet-50, an
output size of 512, 1 head, and 3 layers.

Network 5: This model is the same as RepNet, except
there are two S4 decoders to add temporal context to

the frames features from the final layer of Resnet-50.
The first decoder has an input size of 2048 and output
size of 1024. The second decoder has an input size of
1024 and an output size of 512

¢ Network 6: This model uses an S4 decoder on the out-
put of the Resnet-50 backbone to add temporal context
and reduce the feature size from 2048 to 512. This
model also removes the 2D convolution on the TSM,
and instead feeds each row of the TSM through an-
other S4 decoder with input and output size N = 64,
4 heads, and 0.2 dropout.

* Network 6 (4 layer): This is the same as network 6
above, except the final S4 decoder uses 4 layers instead
of 1, to capture a more complex temporal understand-
ing of the video with less features for each frame.

e Network 7: This network is the exact same as the
above 1 layer network 6, except the the 2D convolu-
tion on the TSM is included before being passed on to
the final S4 decoder. This 2D convolution has a kernel
size of 3 x 3 and 32 channels, therefore the input size
of the final S4 decoder is 32 x 64 for the 64 frame case.

e Network 7 (128 frame): This network is the exact
same as the above network 7, except 128 frames are
used instead of 64 frames. Therefore the final S4 de-
coder will have an input size of 32 x 128 in this case.

* Network 8: This model uses an S4 decoder with spa-
tial pooling in place of the 3D convolution in Rep-
Net. This S4 decoder serves the reduce the feature size
for each frame before the computation of the temporal
self-similarity, which should help to reduce the com-
putational overhead especially for a large number of
frames. The S4 decoder consists of 3 layers, the first
with input size 2048 and output size 1024, the second
with output size 512, and the third with output size
256. The normal transformer encoder is used after the
convolution on the TSM, the same as in RepNet.

* Network 9: This model removes the initial temporal
context altogether, and instead uses 4 layers of S4 de-
coders on the output of the convolution on the TSM.
The first S4 decoder has input size 64 x 32, and the
following three S4 decoder have input/output size 512,
all with 4 heads and 0.25 dropout.

For each of these models, we recorded the evaluation
metrics on the Countix validation set after exactly 20 epochs
of training. Most of these models generally started off gen-
erating the same predictions on the validation set because
of class imbalance, this causes the validation errors to start
off much lower than the training errors and increase over-
time. For the majority of these models, overfitting started to

occur well before the 20th epoch, and the validation errors
continued to diverge past this point.

In the end, we end up just using network 8, as this pro-
duced the best results and allows processing of a much
larger number of frames.

6.3. Implementation Details

For each experiment, we use the same hyperparameters
as [5]. This corresponds to using the Adam optimizer with
a learning rate of 6e — 6 and a batch size of 5 with 64
frames unless stated otherwise. For the coding of our mod-
els, we also use the the implementation of the temporal self-
similarity matrix provided by the authors of [5].

Results on COUNTIX
System MAE OBO
Ours (256 Features) 0.55 0.48
Ours (64 Features) 0.58 0.52
Ours (1 Features) 1.05 0.70

6.4. Results
Results on COUNTIX
System MAE OBO
RepNet (Reported) 0.36 0.30
RepNet (Tested) 0.46 0.50
Ours (32 Frames) 0.59 0.56
Ours (64 Frames) 0.55 0.48
Ours (128 Frames) 0.53 0.48
Ours (180 Frames) 0.47 0.46

From the above table, it is clear that the model performs
worse when utilizing less features for the input to the TSM
module. This is expected since a lot of information is lost
when reducing all the way from 512 features to just a single
feature. However, the results for using 64 features are still
comparable to the results when using 256 features.

6.5. Vision Transformer

Leveraging our systems ability to handle a large number
of tokens, we also tested our system using a pretrained Vi-
sion Transformer as a backbone. For this, we use ViT tiny
with a patch size of 32. We use 6 S4 Decoders to reduce
the output feature size from 64x7x7x786 to 64x1x1x256

Results on COUNTIX
System MAE OBO
Ours (ViT backbone) || 0.53 0.45

As mentioned, we compare our system both to the re-
sults of [5], as well as the results we were able to obtain
using their publicly available code. In both MAE and OBO
results, we demonstrate a marginal increase in performance
as the number of frames our system is fed increases. This
makes intuitive sense, as additional frames can either
increase confidence in single repetitions due to increase
density, or essentially increases the size of the dataset, as
our system will learn more about the visual information of
each period.

On MAE, our system does not match the performance
of our tested results on RepNet’s public model, beating our
system by several points on each system. However, with
our 180 frame model comes very close, only missing by
one point. We fair better on the OBO results. Again, we do
not come very closer to the results on RepNet’s non-public
results. However, our 64 frame, 128 frame, and 180 frame
models all beat our tested results on their public model. The
180 frame system, in fact, exceeds by four points.

Computing the pairwise temporal self-similarity for each
frame embedding can be expensive (O(N?) for N frames).
Therefore, we also test a much larger reduction in the num-
ber of features in the S4 transformer. The model is the same
as our final S4 Transformer model, but uses 64 frames and a
different output size in the final layer of the S4 Transformer.

We show a 2 point improvement over our 64 frame model
when switching to ViT, which is expected given the super-
vised recognition performance different versus ResNet50.
More importantly however, this shows as proof of concept
that this approach toward feature reduction could be applied
to more powerful video transformers, whereas previous ap-
proaches were required to use 3D convolutional neural net-
works to satisfy memory requirements.

7. Discussion
7.1. Applications

Predicting occurrence of processes from videos Our
proposed algorithm is more suitable for predicting the count
and occurrence of any action from videos. It can be specif-
ically focused on biological processes which are repetitive
in nature such as heartbeats. [17] utilizes magnifying the
changes among the videos frames to identify subtle changes
in videos. The output from this can be fed into out network
and predict the changes.

Estimating count over larger temporal window In
addition to motion occurring in the wild in smaller in-
stances, repetition patterns occur over larger temporal win-
dows which can be repeat as long as days. Our algorithm
will be able to predict count in such cases by simply using
a larger stride rate.

Sports Analysis Our work can serve as an analysis plat-
form when combined with action localization and action

recognition. It can be utilized in conjunction with [3] to
analyze the action instances where a player was fouled and
then using our work to analyze localized action instances to
count the total number of fouls in a game.

Anomaly Frequency This work can be extended to se-
curity analysis where we can count the number of times an
anomaly occurs. [15] utilizes real-world surveillance videos
which are unprocessed to identify the number of anomalies
present in the real world, our work can be used on top of the
output to analyze the frequency of anomaly present creating
a summary of the events that occurred during a time period.

7.2. Limitations

While our system is able to eliminate some of the bot-
tlenecks in previous models associated with higher frame
counts, it still requires each frame be individually encoded
in order to learn periodicity. This means that even with the
S4 Transformer, extremely large numbers of frames must be
split into minibatches for the visual backbone. Future work
could investigate how to pool this information earlier in the
model sidestep this issue.

7.3. Future Work

Our system embeds temporally rich information into
frame encoders while reducing the visual information only
to what is necessary to estimate periodicity. Future work
could take this approach to its logical conclusion, directly
using S4 Transformers to reduce the frame features of a
video down to 1, essentially denoting a single output sig-
nal. A 1D CNN could then be used to learn the periodicity
of the video on this 1D signal, rather than the 2D CNN on
the temporal self-similarity matrix.

8. Conclusion

In our work, we have presented a simple yet efficient
approach to solve repetitive action counting problem. We
utilize the state space transformers to handle the temporal
information from the video hence enabling us to process the
information in one single pass. This model achieves com-
parable state of the art results and successfully predicts the
count over a complex dataset that has a varied set of objects
in motion captured from a diverse set of sensors. We believe
given a longer sequence of videos the state space transform-
ers will be able to perform better and handle dense repeti-
tion sequence and using only a single pass. The next steps
involve using different camera augmentation techniques to
handle the camera motion in order to make sure the model
does not over fit only on repetitive motion itself. Our work
can be extended to counting biological processes, summa-
rizing key events in surveillance and sports analysis.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 3

[2] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 2

[3] Adrien Deliege, Anthony Cioppa, Silvio Giancola, Meisam J
Seikavandi, Jacob V Dueholm, Kamal Nasrollahi, Bernard
Ghanem, Thomas B Moeslund, and Marc Van Droogen-
broeck. Soccernet-v2: A dataset and benchmarks for holistic
understanding of broadcast soccer videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4508-4519, 2021. 8

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2, 4

[5] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. Counting out time:
Class agnostic video repetition counting in the wild. CoRR,
abs/2006.15418, 2020. 1, 2,3,4,5,6,7

[6] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga,
Liam Hodgkinson, and Michael W Mahoney. Lipschitz re-
current neural networks. arXiv preprint arXiv:2006.12070,
2020. 2

[71 Albert Gu, Karan Goel, and Christopher Ré. Efficiently
modeling long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396, 2021. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 3

[9] Md Mohaiminul Islam and Gedas Bertasius. Long movie clip
classification with state-space video models. arXiv preprint
arXiv:2204.01692,2022. 2, 3

[10] Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang,
Pei Lv, Bing Zhou, Xin Yang, and Yanwei Pang. Attention
scaling for crowd counting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 2

[11] Will Kay, Jodo Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset. CoRR, abs/1705.06950, 2017. 5

[12] Roberto Morelli, Luca Clissa, M. Costa Dalla, Michael
Luppi, Lisa Rinaldi, and Antonio Zoccoli. Automatic cell
counting in flourescent microscopy using deep learning.
ArXiv, abs/2103.01141, 2021. 2

[13] Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh
Hoai. Learning to count everything. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3394-3403, June 2021. 2

[14]

[15]

[16]

(17]

[18]

Tom FH Runia, Cees GM Snoek, and Arnold WM Smeul-
ders. Real-world repetition estimation by div, grad and curl.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9009-9017, 2018. 2

Wagas Sultani, Chen Chen, and Mubarak Shah. Real-world
anomaly detection in surveillance videos. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 6479-6488, 2018. 8

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3, 6

Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag,
Frédo Durand, and William Freeman. Eulerian video mag-
nification for revealing subtle changes in the world. ACM
transactions on graphics (TOG), 31(4):1-8, 2012. 7
Yunhua Zhang, Ling Shao, and Cees G. M. Snoek. Repetitive
activity counting by sight and sound. CoRR, abs/2103.13096,
2021a. 1,2

