Neighborhood Matters

Clustering-Driven Regression for House Price Prediction

Shane Rhoads Connor Malley
University of Central Florida University of Central Florida
Orlando, FL, USA Orlando, FL, USA
srthoads2 @knights.ucf.edu malleyconnor @knights.ucf.edu

Abstract

House prices are notoriously difficult to predict due to their dependence on an enormous number of factors that
are difficult to express through features. Most of this challenge is due to the complex, yet massive impact of the
location of the property. Simple regression models such as Linear Regression and K-Nearest Neighbors often fail
utilize location data effectively, especially when considering a large geographical area. In this work, we propose a
method for predicting house sale prices by extracting meaningful spatial clusters. We test our method on real property
sales data from King County, USA [1], and we show that localizing the house data by clustering can significantly

decrease the generalization error of the predicted house sale prices.

I. INTRODUCTION

For any prospective renter or homeowner, it is extremely difficult to analyze the true value of a property listing.
Many properties are sold for far above or below the initial asking price, and it is a common frustration for potential
buyers to question whether a property is over or under-valued on the market. A large part of this issue stems from
how geographical location can significantly impact the value of similar houses, and in many cases there are not
similar properties in an area to directly compare. Despite the complexity of determining the relationship between
location and property value, a recent analysis on the impact of different factors influencing buyers decision to
purchase residential properties found that location was the most important [2].

Classical machine learning models for predicting house sale prices either do not account for this, or simply
include geographical location as a feature without considering the distribution of the properties in more detail.
Several works have shown that housing prices have very strong spatial correlation [3], [4]. Furthermore, these
correlations are not linear [3] and are nearly impossible to capture through simple feature engineering methods.
We seek to improve upon house price prediction accuracy by capturing the geographical distribution of the houses

with the use of spatial clustering.

Rather than training a singular regression model on the entire dataset [1], we propose to break it into multiple
spatial sub-regions based on latitude and longitude information. We then preprocess and fit an independent regression
model to each sub-region. This will allow each model to differentiate between the different types of properties and
the relevance of features based on their location. For example, dense regions around major cities and sparser regions
in rural areas will have notably different feature values, and using spatial sub-regions our model is able to more
effectively capture this complex relationship between location and features. We further expand on this by showing
how ensemble learning methods, such as Adaboosting and Gradient Boosting, can provide even greater performance

on house price prediction through the use of spatial clustering.

II. RELATED WORKS

Several works in economics have shown the importance of spatial information on predicting house prices [3],
[4]. The work of [3] has shown that there is strong evidence for the auto-correlation of prices by dividing larger
regions of housing data into smaller submarkets for different metropolitan areas.

In [5] the authors compared several different models for predicting house prices, specifically focusing on spatial
and temporal patterns. The tested models include a simple least-squared model, a local regression model, a model
based on clustering demographic information, and a model based on fitting a regressor from the nearest neighbors.
The last of these is effectively a 2-step k-nearest neighbor algorithm, which first finds similar datapoints and then
provides a unique regressor based on them. This is quite different to our method as it computes both a grouping
and model separately for each datapoint prediction. The demographic clustering model is the most effective out of
the models in [5]. Their approach is the most similar to ours. However, their model generates clusters from multiple

features in addition to location, and it explicitly includes nearest-neighbor residuals in the model prediction.

III. SPATIAL CLUSTERING

It has been concretely established that the geographical location of a house plays a massive role in determining
its value [3], [4], [6], [7]. This is due to many crucial factors being highly sensitive to location such as: average
income, population density, local school ratings, availability of public services, and many others [2]. However, it
is impractical to collect and directly model the effect of these features as they differ significantly by both area and
person. As a result, simple models such as K-Nearest Neighbors (KNN) or Linear Regression are unable to provide
precise predictions for datasets covering a large geographical area.

To solve this issue, we propose a model based on spatial clustering to separate data into different sub-regions
based on latitude and longitude. The principle of our model is to assign new data points to a spatial cluster, then
predict the price using a regressor specifically tailored to that cluster. This approach is geographically localized and

can indirectly capture the effect of these location-sensitive features.

Snohomish

Snohomish /

n n
. § g8 §
Chelan Chelan
J J
J J
s
¢
Kittitas Kittitas

R

A\,
‘I/’NV /\’\\A/\\

.
Ve
{
§ un\‘\ (\/J 10kn
Pierce Y e

I

Pierce

© amap

(a) K-Means++ (b) DBSCAN

Fig. 1. Result of latitude and longitude clustering on the dataset. Each datapoint is colored based on the cluster it
is inside. In this example, k=10 for K-Means and eps=0.0175, neighbors=100 for DBSCAN.

Here, we describe the details of our implementation of the full cluster-based model framework. The framework
consists of 4 stages:

1) Generate spatial clusters

2) Preprocess each cluster’s feature data and perform feature selection

3) Fit an independent regression model for each cluster

4) Predict future house prices by assigning them to a cluster and predicting with its regressor

We describe each of these stages in detail in the follow sections.

A. Spatial clustering model

For our implementation, we chose to focus on two clustering methods: K-Means++ [8] and DBSCAN. These
methods are representative of center-based and density-based clustering approaches, respectively. K-Means was
chosen because it is a very well-known, center-based clustering algorithm. In addition, K-Means explicitly accepts
the number of clusters as an input. This allows fine control over the number of samples in each cluster and the
creation of globular clusters of approximately equal size.

Alternatively, DBSCAN is a density-based clustering method and is able capture contiguous regions representing
individual cites, towns, or neighborhoods. These may be missed in the globular clusters extracted by k-means. In
both clustering methods, euclidean distance is used for similarity calculations. Examples of the clusters extracted

by each method are shown in Figure 1.

K-Means SSE vs. k DBSCAN Eps Optimization Plot
0.5 1

400 1

3501 0.4

300 A

0.3 1
250 4

200 1
0.2

150 4

100 4 011

Optimal Eps ~= 0.018 A—J
o4 TS] eeeemm e e e e e e

0.0 1

SSE
Lat/Long Distance to 50-th nearest neighbor

T T T T T T T T T T T T
1 3 5 7 9 11 13 15 17 0 2500 5000 7500 10000 12500 15000 17500

k Sample #
(a) K-Means++ K Optimization (b) DBSCAN Eps Optimization

Fig. 2. Optimization of clustering hyperparameters

For both clustering methods, it is crucial to optimize the hyperparameters to ensure consistent performance. If
the clusters are not well-defined or if there are a small number of data points per cluster, insufficient information
will be captured by the clustering process. This can hinder the classification performance later in the model.

1) K-means Hyperparameter tuning: For K-Means, we only need to define the number of clusters k. Intuitively,
we want to select a number of clusters such that the maximum amount of relevant information is captured, while
still having a significant amount of samples in each cluster. To select this parameter, we use the sum of squared
errors (SSE). The SSE will inherently decrease as new clusters are added, and we iteratively test values of k and
search for the clusterings where the SSE begins to decrease linearly with respect to k. In this case, we choose
k = 7 for all experiments.

2) DBSCAN Hyperparameter tuning: Optimizing DBSCAN is more complicated as it contains multiple hyperpa-
rameters. The first parameter, eps, is the maximum distance between two points for them to be considered neighbors.
The other, min_samples, is the minimum number of neighboring samples that a core point must have. To select the
optimal value for both parameters, we use the method described in [9]. For some value of min_samples, we plot
the sorted distances for every point to its k-th nearest neighbor, where min_samples. Conceptually, noise points
will have a much higher distance to their k-th nearest neighbor, and we choose the value of eps such that these
noisy points are truncated. We define min_samples = 100 and eps = 0.0175 for all experiments, which creates

about 17 clusters. Hyperparameter optimization for both of these clustering methods is visualized in Figure 2.

B. Preprocessing and Feature Selection

Prior to feature selection, we preprocess the training data by normalizing each feature to within the range [0, 1].

This is performed on a per-cluster basis for each feature. This step helps to increase the variance for certain clusters.

For example, if one cluster consisted of homes with very similar square footage, normalizing the data independently
allows the small variations in this feature to be highlighted within the cluster.

Another issue that may arise from the clustering is when some features become invariant. For example, the
waterfront feature, which is a boolean indicating whether a house has a view of a waterfront or not, will always
be false for clusters not located near a body of water. For situations such as this, the feature is removed from that
cluster.

In our model, we utilize two feature selection methods, mRMR and Random Forest ranking. For both methods,
we ranked all features in the dataset and selected the top features via thresholding of importance scores.

1) mRMR Feature Selection: Our mRMR implementation uses Pearson correlation for computing redundancy
and F-Test for computing relevance. We take as input the number of features to select, then greedily pick them
one at a time by maximizing the global optimization function. We tested both an additive and multiplicative global
optimization function, and found the multiplicative approach to be slightly more effective. These correspond to the
FCD and FCQ version of mRMR, respectively.

The performance of mRMR feature selection method was tested by training a KNN model using each number
of features from 1 to 20 selected by mRMR. The best global features are then used for each individual cluster. In
this work, the FCQ mRMR performance improved negligibly after the inclusion of 8 features.

2) Random Forest Ranking: As an alternative, we also used the Random Forest algorithm to rank the features
by their impurity-based importance. This allows us to easily define a hard threshold, at which the less important
features are then truncated. In this work, we define threshold = 0.01, which is about 11 features, though this

changed slightly on each training split.

C. Model Training

As described before, the model is trained using the selected features by fitting an independent regressor to the

training data from each cluster. The complete training process is elaborated by Algorithm 1.

D. Model Testing

In order to provide a prediction for a new datapoint, we must first determine the cluster of the datapoint. To
do this, we compute euclidean distance between the latitude and longitude of the new point and each point in the
training set. We then assign the datapoint to the cluster of the closest point from the training set. Once we have

determined the cluster, we predict the price using the regressor for that cluster. This is described by Algorithm 2.

IV. DATASET OVERVIEW

The dataset consists of n = 21,613 property sale records, taken from King County, USA (Washington) from
over a period of one year from May 2014 to May 2015. Each datapoint contains 20 features and the sale price.

The exact content of each feature is explained in Fig 3.

Algorithm 1: Cluster-Based Model Training

Input: List of clusters C' each containing a non-empty subset of the training data D,
Output: List of regressors R, one for each cluster

for each cluster ¢; € C:
normalize(D c;))
features = select_features(Dy,)
data = []
for each feature f in features:

data.append(D, [f])

initialize regressor r;
r;.fit(data)
R.append(r;)

Algorithm 2: Cluster-Based Model Prediction

Input: Test Datapoint D, List of clusters C' each containing a non-empty subset of the training data T’
Output: Predicted price of the datapoint P

min_distance = 1e6

min_datapoint = None

for each training point 7; € T:
distance = Euclidean_distance(7T;, D)
If distance ; min_distance then

min_distance = distance
min_datapoint = T;

test_cluster = min_datapoint.cluster
P = test_cluster.predict(D)

Most of these features represent specific aspects of the individual property. However, there are also some features

which contain aggregated data from other features. One example is Sqft_living15, which is the average square foot

of the property’s 15 nearest neighbors.

Variable Description
Id Unique [D for each home sold
| Date Date of the home sale
Price Price of each home sold
Bedrooms Number of bedrooms

Grade

Sqft_above

Anindex from [to 13, where 1-3 falls short of building construction
and design, 7 has an average level of construction and design, and 11-
13 have a high quality level of construction and design

The square footage of the interior hou@nhg space that is above ground
level

Bathrooms

Number of bathrooms, where .5 accounts for a room with a toilet but
no shower

Sqft_basement

The square footage of the interior housing space that is below ground
level

Yr_built The year the house was initially built
Yr_renovated The year of the house’s last renovation
Zipcode What zipcode area the house is in

Lat Lattitude

Long Longitude

Sqft_livingl5

The square footage of interior housing living space for the nearest 15
neighbors

| Sqft_living Square footage of the apartments interior living space
Sqft_lot Square footage of the land space
Floors Number of floors
: A dummy variable for whether the apartment was overlooking the
Waterfront .
walterfront or not
View An index from 0 to 4 of how good the view of the property was
Condition An index from | to 5 on the condition of the apartment,

Sqft_lotl5

The square footage of the land lots of the nearest 15 neighbors

Fig. 3. Explanation of dataset features [1]

V. EXPERIMENTATION

In order to examine the overall effectiveness of our clustering model, we tested the performance using a wide range
of classical and ensemble regression algorithms: Linear Regression, 2nd-order Polynomial Regression, K-Nearest
Neighbors, Random Forest Regression, Gradient Boosting, Adaboost, and XGBoost [10]. For each algorithm, we
also tested each combination of feature selection and clustering method as described in Section III. Each of these

are evaluated using 5-fold cross validation (nyqin = 17,290 and n4est = 4, 323).

A. Baseline methods

For our baseline, we placed the entire training dataset into a single cluster, which is equivalent to performing no
clustering. This allows us to directly observe how our more localized, clustering models perform in comparison to

a traditional global model, regardless of the underlying regressor that is used.

VI. RESULTS

A summary of our results can be seen in Tables 1 through 6. Tables 1 to 3 show the results from using mRMR to
perform feature selection and tables 4 to 6 show the results from using Random Forest feature selection. With either

method, it is clear that the cluster-based model offers a notable improvement to every tested regression method.

Results with mRMR Feature Selection

Regressor R? RMSE (USD) Regressor R? RMSE (USD) Regressor R? RMSE (USD)
KNN 0.775 1.737 - 10° KNN 0.812 1.589 - 10° KNN 0.827 1.525 - 10°
Linear Regression 0.651 2.165 - 10° Linear Regression 0.772 1.752 - 10° Linear Regression 0.766 1.771 - 10°
Polynomial Regression 0.722 1.927-10° Polynomial Regression 0.808 1.603 - 10° Polynomial Regression 0.787 1.649 - 10°
Adaboost 0.518 2.536 - 10° Adaboost 0.721 1.933 - 10° Adaboost 0.753 1.818 - 10°
Gradient Boosting 0.808 1.601 - 10° Gradient Boosting 0.831 1.504-10° Gradient Boosting 0.844 1.445.10°
Random Forest 0.808 1.603 - 10° Random Forest 0.83 1.509 - 10° Random Forest 0.848 1.428 - 10°
Decision Tree 0.617 2.26 - 10° Decision Tree 0.688 2.041-10° Decision Tree 0.715 1.95-10°
XGBoost 0.81 1.596 - 10° XGBoost 0.836 1.483 - 10° XGBoost 0.856 1.389 - 10°

TABLE 1. Baseline Results TABLE 2. Kmeans Results TABLE 3. DBSCAN Results

Results with Random Forest Feature Selection

Regressor R? RMSE (USD) Regressor R?> RMSE (USD) Regressor R? RMSE (USD)
KNN 0.833 1.497 - 10° KNN 0.851 1.414-10° KNN 0.85 1.419 - 10°
Linear Regression 0.682 2.068 - 10° Linear Regression 0.8 1.64-10° Linear Regression 0.791 1.674 - 10°
Polynomial Regression 0.752 1.82-10° Polynomial Regression 0.841 1.435 - 10° Polynomial Regression 0.798 1.67-10°
Adaboost 0.588 2.346 - 10° Adaboost 0.77 1.757 - 10° Adaboost 0.771 1.752 - 10°
Gradient Boosting 0.885 1.242-10° Gradient Boosting 0.89 1.213 -10° Gradient Boosting 0.874 1.296-10°
Random Forest 0.878 1.281-10° Random Forest 0.879 1.274-10° Random Forest 0.878 1.321-10°
Decision Tree 0.74 1.862 - 10° Decision Tree 0.751 1.828 - 10° Decision Tree 0.734 1.884 - 10°
XGBoost 0.885 1.242 - 10° XGBoost 0.889 1.221-10° XGBoost 0.881 1.262 - 10°

TABLE 4. Baseline Results TABLE 5. Kmeans Results TABLE 6. DBSCAN Results

A. Impact of clustering method

We find that both DBSCAN and K-Means clustering improves the overall performance of the regression models.
Interestingly, we find that DBSCAN clustering performs best with mRMR feature selection while K-Means clustering

performs best with Random Forest feature selection.

B. Comparison with Baselines

From Tables 1 - 6, we see that Adaboost achieves the largest decrease in error between the baseline model and
the cluster-based model, with AR? a2 0.20 in most cases. Linear Regression showed the second largest increase
with AR? ~ 0.12. The 2nd-order Polynomial Regression achieved AR? ~ 0.07, though this fluctuated more than
other methods due the higher dimensionality of the polynomial features and the lower sample sizes in some clusters.
The KNN model showed surprisingly good baseline results, and still exhibited an improvement of AR? ~ 0.025.
A simple impurity-based Decision Tree also displayed improvement with AR? = 0.05.

Compared to the baseline, all of the tested ensemble methods showed slightly better performance of AR? ~ 0.02
when using the mRMR selected features. Interestingly, these same models also displayed a much smaller increase
in performance when using the Random Forest selected features. Nevertheless, Random Forest, Gradient Boosting,
and XGBoost displayed the overall best performance on average. The Gradient Boosting model with Random
Forest feature selection and K-Means clustering had the best performance in any case, with R? ~ 0.890 and
RMSE =~ $121,300. From table 5, it is clear that Random Forest and XGBoost performed on par Gradient

Boosting.

C. Impact of feature selection

In general, the ensemble regressors performed significantly better when utilizing the Random Forest selected
features. This is due to the impurity-based ensemble regressors being better suited for use with impurity-based
feature selection. In fact, most of these ensemble methods showed a more significant improvement from the addition
of impurity-based ranking than from the addition of the cluster-based model.

Interestingly, combining the two methods resulted in slightly higher errors in a few clusters. This is likely attributed
to a significant decrease in the sample size as a result of the spatial clustering, and could likely be improved with

further tuning. See below for the most common features selected, and ranked, by mRMR and Random Forest.

Selected Features

mRMR: sqft_living, grade, lat, waterfront, yr_renovated, sqft_above, sqft_livingl5, condition

Random Forest: grade, sqft_living, lat, long, waterfront, sqft_livingl5, yr_built, sqf_above, sqft_lotl5, view, sqft_lot

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have shown that the spatial clustering of large housing datasets can be utilized to improve

performance on a wide range of regression algorithms. This is accomplished by generating spatial sub-regions that

provide greater feature variances and location-specific feature valuation.

We have also shown that the robust ensemble methods such as XGBoost, Gradient Boosting and Random Forest,

which provide the best predictions in most cases, are the most challenging to improve with clustering.

For future work, our spatial clustering method can be extended to datasets with much larger sample size. This

would enable denser clusters and a general increase in performance. Furthermore, covering a larger geographical

region may would allow us to explore the use of nested clusters and regressors, which could further improve

performance. It is also possible to apply these same clustering techniques to incorporate other, non-spatial feautres.

This could lead to the creation of more informative clusters based on specific features, such as public services or

demographic information.

(1]

(2]

[31]

(4]

(5]

(71

(8]

(9]

[10]

REFERENCES

A. Alsaqri, S. Inturi, P. Shivhare, S. Singhania, and K. T. Vinayagam, “King county house prices prediction model,” 2017. [Online].
Available: https://www2.slideshare.net/PawanShivhare 1/predicting-king-county-house-prices

D. Rachmawati, S. Shukri, S. Azam, and A. Khatibi, “Factors influencing customers’ purchase decision of residential property in selangor,
malaysia,” Management Science Letters, vol. 9, pp. 1341-1348, 2019.

S. Basu and T. Thibodeau, “Analysis of spatial autocorrelation in house prices,” The Journal of Real Estate Finance and Economics,
vol. 17, pp. 61—385, 1998.

X. Liu, “Spatial and temporal dependence in house price prediction,” The Journal of Real Estate Finance and Economics, vol. 47, pp.
341—-3695, 2013.

B. Case, R. Clapp, J.and Dubin, and M. Rodriguez, “Modeling spatial and temporal house price patterns: A comparison of four models,”
The Journal of Real Estate Finance and Economics, vol. 29, pp. 167—191, 2004.

y. Tu, H. Sun, and S. Yu, “Spatial autocorrelations and urban housing market segmentation,” The Journal of Real Estate Finance and
Economics, vol. 34, pp. 385-406, 2007.

S. Bourassa, E. Cantoni, and M. Hoesli, “Predicting house prices with spatial dependence: A comparison of alternative methods,” Journal
of Real Estate Research, vol. 32, pp. 139-160, 2010.

D. Arthur and S. \Vassilvitskii, “k-means++: The advantages of careful seeding,” June 2006. [Online]. Available:
http://ilpubs.stanford.edu:8090/778/

M. Elbatta, R. Bolbol, and W. Ashour, “A vibration method for discovering density varied clusters,” ISRN Artificial Intelligence, vol. 2012,
01 2012.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD "16. New York, NY, USA: Association for Computing Machinery,
2016, p. 785-794. [Online]. Available: https://doi.org/10.1145/2939672.2939785

