
Beyond the Horizon
Camera Pose and 3D Scene Reconstruction from Single-View Geometry

Connor Malley

November 24, 2022

1 Introduction

When taking an image of a scene, the camera projection matrix P maps a set of 3-dimensional world points
(X, Y, Z, W)T to a corresponding set of 2-dimensional image points (x, y, w)T . However, the 3D information
of the scene can be recovered with knowledge of the camera matrix P , or rather knowledge of the 2D position
of the vanishing points in each of the (X, Y, Z) directions in the image. Some extra information about the
planar surfaces in the image is needed as well, which is shown in this report. By recovering the 3D positions
of just a few select keypoints, 3D models of objects in the scene can be roughly reconstructed, ignoring any
intricate details.

2 Defining a Coordinate System

2.1 Computing the Vanishing Points

Before recovering the 3D information of the scene, an origin O = (Ox, Oy, Ow) must be defined within the
image plane. This origin is selected such that the (X, Y, Z) axes of the 3D scene are intuitive, such as the
corner of a room. In this project, I assume that the XY plane comprises the ground plane, and that all
objects lie on or above the ground plane.

Once the origin and axes are selected, the location of the vanishing points in the image are computed. For
example, to find the Y vanishing point vy, a line ly parallel (in 3D space) to the Y axis (which I will denote as
LY) is selected. The location of vy is then given by the point of intersection of these two lines, which maps to a
finite location of vy = LY × ly in the image. The same process is used for the other axes as well, giving vx and vz.
The camera projection matrix is then given by P = [αvx, βvy, γvz, O], where (α, β, γ) are scale factors that
must be computed.

2.2 Computing the Scale Factors
To compute the scale factors for each axis, either some reference lengths must be known, or the sides of some
object in the scene (such as a cube) can be assumed to be unit length. For simplicity, I used reference lengths
along each of the axes from the origin, but the measurements can be done off the axes as well. The scales
factors are computed using a construction of a cross-ratio with the reference lengths, since the value of the
cross ratio is invariant after projection using the camera matrix. I will give an example using the Z axis. First,
the vanishing line for the Z axis is computed by getting the line through the vanishing points vx and vy, given
by Vz = vx × vy. Two endpoints of the reference length Zref are then selected, denoted as t and b for “top” and
“bottom”. The line for this reference length is then intersected with Vz to give the third point for the cross-
ratio, vl = (t × b) × Vz. The final point for the cross ratio is the Z vanishing point vz. In 3D space, the cross
ratio results in γZref , due to the fact that the vanishing points are actually at infinity in 3D space. Since the
cross-ratio is invariant, computing the same cross-ratio in the image plane, and dividing by the reference
length will give the scale factor γ. In this project, I use the following cross ratio:

1

(a) Example 3D Coordinate System (b) Example Parallel Lines

Figure 1: Defining Coordinate System and Computing Vanishing Points

||t− b|| ∗ ||vz − vl||
||t− vl|| ∗ ||vz − b||

= γZref (1)

Once the value of γ is found using the reference length, the length of any other line segment along the Z
axis can be computed as well, by taking the same cross-ratio and dividing by γ. The other scale factors α
and β are computed in a similar manner.[1]

2.3 Computing 3D Coordinates

2.3.1 Coordinates in a Reference Plane

If computing the 3D coordinates of a point in one of the reference planes (XY,XZ, orY Z), the method
is relatively simple. For example, if computing the position of a point in they Y Z plane, given by p =
(px, py, pz, 1)

T we can start by assuming that px = 0. Assume the projected point is given in the image
plane as t = (x, y, 1). The line from t to vy in the image plane is computed, and intersected it with the Z
axis, given by by = (t× vy)× LZ . Similarly in the Y direction, we have that bz = (t× vz)× LY . This gives
the points t and b for the cross-ratio in each direction. The lines between t and {by, bz} are intersected with
the vanishing lines, giving the other points vly and vlz. The coordinates py and pz are then given by the
following equation (after ensuring each point has a scale of 1):

px = 0, py =
||t− by|| ∗ ||vy − vly||
||t− vly|| ∗ ||vly − by||

/β, pz =
||t− bz|| ∗ ||vz − vlz||
||t− vlz|| ∗ ||vlz − bz||

/γ (2)

2.3.2 Coordinates out of a Reference Plane

If the coordinates do not lie in one of the reference planes, but rather some other plane parallel to a reference
plane, we must also know the distance of that plane from the reference plane. The distance of the planes
could also be measured in the image using a cross-ratio, which simplifies things since the measurement
doesn’t have to be taken in the real world. In this case, there is a similar process. Again using the example
relating to the Y Zplane, assume the point p = (px, py, pz, 1)

T lies on some plane π parallel to the Y Z plane,
and that π is a distance of Xref from the Y Z plane. In the image, the projected point is given as t = (x, y, 1).
Assume the plane π intersects the x-axis at the point r = (rx, ry, 1) in the image. Then, lines can be drawn
from r to the vanishing points vy and vz, call them Ry and Rz. Similarly, lines can be drawn from t to
the vanishing points vy and vz, call them Ty and Tz. The lines from t and r are then intersected, where
by = Tz ×Ry = (t× vz)× (r× vy) and bz = Ty ×Rz = (t× vy)× (r× vz). This gives the point t and b that
are needed to compute the cross-ratio in both the Y and Z directions, thus py and pz are given by Equation
2, and px = Xref .

2

(a) Measurement in YZ Plane (b) Measurement in plane π parallel to Y Z

Figure 2: In reference plane vs. out of reference plane measurements

2.3.3 Finding the Camera Centre

The camera matrix P = [p1, p2, p3, p4] can be written in terms of the vanishing points, such that P =
[αvx, βvy, γvz, O] where O is the image of the origin. The location of the camera centre is then given by
the right null space of P . Once the scale factors α, β, γ are found, the camera centre can is recovered by
constructing P and getting the right null-space of P using singular value decomposition. [2]

3 Methods

All of the 3D points were selected using one of the methods described in the previous section. Allowing points
to be selected on one of the reference planes directly made computation a bit easier in some cases, since it
did not require the specification of a reference length for the plane. A selection of keypoints were manually
selected, and reference lengths between planes were measured using the same method of cross-ratios in the
program. All points and line segments were then plotted using plot3 in MATLAB, and the planes were
colored using fill3. In the process I made some assumptions, such that the back side of the shed had the
same structure as the front side, and that the poles were evenly spaced and identical. In the 3D model of
the television stand, I also assumed that the legs were identical, and I calculated their positions by simply
measuring their distance in the program, and translating them along the XY plane. When selecting any
person in a scene I also assumed that they were two-dimensional, which of course led to some slight errors.

3

4 Results

4.1 Shed Scene

(a) X, Y, and Z Axes of the coordinate
system

(b) Lines used for finding the vanish-
ing points

(c) Reference Measurements and XY
plane vanishing line

Figure 3: Set-up of coordinate system for shed scene

Figure 4: Views of shed 3D model (last image shows the camera centre)

This was one of the reference images using by Criminisi in [1]. The model looks fairly accurate, though
the only scale I had to go off of was the height of the man (180 cm). I estimated the same distance in
the other directions. Criminisi computed the camera centre at C̃ = (−381.0 cm,−653.7 cm, 162.8 cm, 1)T

whereas my computed camera centre lies at C̃ ′ = (−344.3 cm,−466.9 cm, 179.7 cm, 1)T . This is off by a bit,
but it is to be expected since I only estimated the lengths in the X and Y directions.

4

4.2 TV Stand

(a) X, Y, and Z Axes of the coordinate
system

(b) Lines used for finding the vanish-
ing points

(c) Reference Measurements and XY
plane vanishing line

Figure 5: Set-up of coordinate system for TV Stand scene

Figure 6: Views of TV Stand 3D model (last image shows the camera centre)

I took this image of a television stand. I chose this since it has a simple rectangular structure, but
it still has some intricate details such as the grooves in the doors and the slightly larger top. I left
the back off of the model to give a better view of the inside. I measured the camera centre to be C̃ =
(−51.5 in,−27.5 in, 38.5 in, 1)T and the computed camera centre was C̃ ′ = (−52.2 in,−28.4 in, 39.3 in, 1)T .
This is within an inch in each direction, so I attributed the error to errors in the vanishing points due to me
selecting the parallel lines manually.

5

4.3 Painting

(a) X, Y, and Z Axes of the coordinate
system

(b) Lines used for finding the vanish-
ing points

(c) Reference Measurements and
XY/YZ plane vanishing lines

Figure 7: Set-up of coordinate system for Painting scene

Figure 8: Views of painting 3D model (last image shows the camera centre)

This was another image used by Criminisi in [1], which is the painting “La Flagellazione di Cristo” by
Piero della Francesca. Here I used one red square on the floor as the unit length, and simply estimated the
same length in the Z direction, which is about the height of a pillar. Here, I computed the camera centre to
be C̃ ′ = (0.056, 4.029, 0.313, 1)T . The reconstruction looks fairly accurate, though I ran into some issues
with the sign of the X and Y positions, due to the nature of the vanishing points. Thus, I had to manually
flip the signs some of the positions to put them in their correct place. Also, the model was extremely laggy
in MATLAB due to the large number of points, so I ignored the detailed reconstruction of the floor. This
was likely due to using fill3 rather than a direct texture mapping, though the 3D model still turned out fairly
well. There is again some error in assuming that each person or pillar is 2D in structure.

6

5 Conclusion

Overall, I think the 3D modeling went well, especially when I had accurate reference measurements. The
shed scene is accurate in the Z direction, but slightly distorted in the X and Y directions. The TV stand
scene is the most accurate since I had exact reference measurements. Lastly, the painting scene is fairly
accurate in all directions since I had a square on the XY plane to use as unit length. The main challenge was
spending time to click the points manually, and making sure to do it precisely. I had many times where the
model was severely distorted, and I had to restart the process. I made sure to save my progress whenever I
made good measurements to prevent having to do this over and over. The main issues I ran into were due
to the ordering of the cross ratio, and the positions of the vanishing points. Sometimes the vanishing points
were in the positive directions, and sometimes they were in the negative direction. I ended up having to
manually swap the signs of points from positive to negative in some cases. This is since the value of the
cross ratio is always positive when using the L2 norm. If I had more time, I would implement a way to do
this automatically based on the position of the chosen points related to the positions of the vanishing points.
For some reason, I could also not get the correct measurements unless I changed the ordering of t and b in
the cross-ratio. I would investigate this further if I had more time, as it was probably due to some bug in
my program, but I was getting the correct measurements so I figured it was irrelevant for the purpose of the
project. Finally, the method I used for filling in the polygons seemed to slow down the program quite a bit,
so I would implement an actual texture mapping by first affinely rectifying each object and then cropping
the texture. All of these implementation issues aside, this project went well, even if it was a bit tedious at
times. My automated method of selecting points on some plane actually worked very well in practice, and
this sped up the process this I did not have to manually input the “bottom” points in the cross-ratios. If you
look closely at the 3D models, you can see that even some small details were captured, such as the golden
statue in the painting, or the slight extension of the top of the TV stand.

References

[1] A. Criminisi. International Journal of Computer Vision, 40(2):123–148, 2000.

[2] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2 edition, 2004.

7

	Introduction
	Defining a Coordinate System
	Computing the Vanishing Points
	Computing the Scale Factors
	Computing 3D Coordinates
	Coordinates in a Reference Plane
	Coordinates out of a Reference Plane
	Finding the Camera Centre

	Methods
	Results
	Shed Scene
	TV Stand
	Painting

	Conclusion

